Сокр. методичка математика

20 Февраль 2014 →

Действия с матрицами

Данная матрица состоит из шести элементов:

Все числа (элементы) внутри матрицы существуют сами по себе, то есть ни о каком вычитании речи не идет:

Это просто таблица (набор) чисел!

Также договоримся не переставлять числа, если иного не сказано в объяснениях. У каждого числа свое местоположение, и перетасовывать их нельзя!

Рассматриваемая матрица имеет две строки:

три столбца:

СТАНДАРТ: когда говорят о размерах матрицы, то сначала указывают количество строк, а только потом – количество столбцов. Мы только что разобрали по косточкам матрицу «два на три».

Если количество строк и столбцов матрицы совпадает, то матрицу называют квадратной, например:

– матрица «три на три».

Если в матрице один столбец

или одна строка

,

то такие матрицы также называют векторами.

Действие первое. Вынесение минуса из матрицы (внесение минуса в матрицу).

Вернемся к нашей матрице

.

Как вы наверняка заметили, в данной матрице слишком много отрицательных чисел. Это очень неудобно с точки зрения выполнения различных действий с матрицей, неудобно писать столько минусов, да и просто в оформлении некрасиво выглядит.

Вынесем минус за пределы матрицы, сменив у КАЖДОГО элемента матрицы знак:

Действие второе. Умножение матрицы на число.

Пример:

Всё просто, для того чтобы умножить матрицу на число, нужно каждый элемент матрицы умножить на данное число. В данном случае – на тройку.

Еще один полезный пример:

– умножение матрицы на дробь

Сначала рассмотрим то, чего делать НЕ НАДО:

Вносить дробь в матрицу НЕ НУЖНО- это только затрудняет дальнейшие действия с матрицей.

И, тем более, НЕ НАДО делить каждый элемент матрицы на минус семь:

Мы помним, что десятичных дробей с запятой в высшей математике стараются всячески избегать. Единственное, что желательно сделать в этом примере – это внести минус в матрицу:

А вот если бы ВСЕ элементы матрицы делились на 7 без остатка, то тогда можно (и нужно!) было бы поделить.

Пример:

В этом случае можно и НУЖНО умножить все элементы матрицы на 1/2, так как все числа матрицы делятся на 2 без остатка.

Примечание: в теории высшей математики школьного понятия «деление» нет. Вместо фразы «это поделить на это» всегда можно сказать «это умножить на дробь». То есть, деление – это частный случай умножения.

Действие третье. Транспонирование матрицы

Для того чтобы транспонировать матрицу, нужно ее строки записать в столбцы транспонированной матрицы.

Транспонированная матрица обычно обозначается надстрочным индексом или штрихом справа вверху.

Пошаговый пример:

Транспонировать матрицу

Сначала переписываем первую строку в первый столбец:

Потом переписываем вторую строку во второй столбец:

И, наконец, переписываем третью строку в третий столбец:

Готово. Грубо говоря, транспонировать – это значит повернуть матрицу набок.

Действие четвертое. Сумма (разность) матриц.

Сумма матриц действие несложное.

НЕ ВСЕ МАТРИЦЫ МОЖНО СКЛАДЫВАТЬ. Для выполнения сложения (вычитания) матриц, необходимо, чтобы они были ОДИНАКОВЫМИ ПО РАЗМЕРУ. Например, если дана матрица «два на два», то ее можно складывать только с матрицей «два на два» и никакой другой!

Пример:

Сложить матрицы

Для того чтобы сложить матрицы, необходимо сложить их соответствующие элементы:

Для разности матриц правило аналогичное, необходимо найти разность соответствующих элементов.

Пример:

Найти разность матриц

Действие пятое. Умножение матриц.

Какие матрицы можно умножать?

Чтобы матрицу K можно было умножить на матрицу L необходимо, чтобы число столбцов матрицы K равнялось числу строк матрицы L.

Пример:

Можно ли умножить матрицу

на матрицу

m=n, значит, умножать данные матрицы можно.

А вот если матрицы переставить местами, то, в данном случае, умножение уже невозможно!

m≠n, следовательно, выполнить умножение невозможно, и вообще, такая запись не имеет смысла .

Следует отметить, что в ряде случаев можно умножать матрицы и так, и так. Например, для матриц,

возможно как умножение MN, так и умножение NM.

Как умножить матрицы ?

Пример:

Умножить матрицы

Я буду сразу приводить формулу для каждого случая:

– попытайтесь сразу уловить закономерность.

Пример сложнее:

Умножить матрицы

Формула:

В результате получена так называемая нулевая матрица.

Если в задании предложено умножить матрицу M на матрицу N, то и умножать нужно именно в таком порядке. Ни в коем случае не наоборот.

Переходим к матрицам третьего порядка:

Умножить матрицуы

Формула очень похожа на предыдущие формулы:

А теперь попробуйте самостоятельно разобраться в умножении следующих матриц:

Умножьте матрицы

Действие шестое. Нахождение обратной матрицы.

Рассмотрим квадратную матрицу A. Обратную матрицу можно найти по следующей формуле:

где |A| – определитель матрицы A, – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы A.

Понятие обратной матрицы существует только для квадратных матриц.

Обозначения: обратная матрица обозначается надстрочным индексом .

Начнем с простейшего случая – матрицы «два на два».

Пример:

Найти обратную матрицу для матрицы

1) Сначала находим определитель матрицы.

Важно! В том случае, если определитель матрицы равен НУЛЮ – обратной матрицы НЕ СУЩЕСТВУЕТ.

В рассматриваемом примере, как выяснилось,

,

а значит, всё в порядке.

2) Находим матрицу миноров M

Для решения нашей задачи не обязательно знать, что такое минор.

Матрица миноров имеет такие же размеры, как и матрица A, то есть в данном случае

.

Дело за малым, осталось найти четыре числа и поставить их вместо звездочек.

Возвращаемся к нашей матрице

Сначала рассмотрим левый верхний элемент

Как найти его минор?

А делается это так: МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшееся число и является минором данного элемента, которое записываем в нашу матрицу миноров:

Рассматриваем следующий элемент матрицы :

Мысленно вычеркиваем строку и столбец, в котором стоит данный элемент:

То, что осталось, и есть минор данного элемента, который записываем в нашу матрицу:

Аналогично рассматриваем элементы второй строки и находим их миноры:

Готово.

– матрица миноров соответствующих элементов матрицы A.

3) Находим матрицу алгебраических дополнений

Это просто. В матрице миноров нужно ПОМЕНЯТЬ ЗНАКИ у двух чисел:

Именно у этих чисел, которые я обвел в кружок!

– матрица алгебраических дополнений соответствующих элементов матрицы A.

4) Находим транспонированную матрицу алгебраических дополнений .

– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы A.

5) Ответ.

Как проверить решение? Необходимо выполнить матричное умножение либо

Проверка:

Получена так называемая единичная матрица (с единицами по главной диагонали и нулями в остальных местах).

Таким образом, обратная матрица найдена правильно.

Пример:

Найти обратную матрицу для матрицы

Обратную матрицу найдем по формуле:

,

где – транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

1) Находим определитель матрицы.

,

а значит, всё нормально – обратная матрица существует.

2) Находим матрицу миноров M

Матрица миноров имеет размерность «три на три»

,

и нам нужно найти девять чисел.

Я подробно рассмотрю парочку миноров:

Рассмотрим следующий элемент матрицы:

МЫСЛЕННО вычеркиваем строку и столбец, в котором находится данный элемент:

Оставшиеся четыре числа записываем в определитель «два на два»

Этот определитель «два на два» и является минором данного элемента. Его нужно вычислить:

Всё, минор найден, записываем его в нашу матрицу миноров:

Как Вы, наверное, догадались, необходимо вычислить девять определителей «два на два».

Ну и для закрепления – нахождение еще одного минора в картинках:

Остальные миноры попробуйте вычислить самостоятельно.

Окончательный результат:

– матрица миноров соответствующих элементов матрицы B.

3) Находим матрицу алгебраических дополнений

В матрице миноров необходимо СМЕНИТЬ ЗНАКИ строго у следующих элементов:

В данном случае:

 

– матрица алгебраических дополнений соответствующих элементов матрицы B.

4) Находим транспонированную матрицу алгебраических дополнений .

 

– транспонированная матрица алгебраических дополнений соответствующих элементов матрицы .

5) Ответ:

Проверка:

Таким образом, обратная матрица найдена правильно.

Как вычислить определитель?

Определитель можно вычислить только для квадратной матрицы.

Обозначения: Если дана матрица

,

то ее определитель обозначают |A|. Также очень часто определитель обозначают латинской буквой D или греческой Δ.

1) Что значит решить (найти, раскрыть) определитель? Вычислить определитель – это значит НАЙТИ ЧИСЛО.

2) Теперь осталось разобраться в том, КАК найти это число. Как Вы догадываетесь, для этого нужно применить определенные правила, формулы и алгоритмы, о чём сейчас и пойдет речь.

Начнем с определителя «два» на «два»:

Сразу рассмотрим пример:

Определитель матрицы «три на три» можно раскрыть 8 способами, 2 из них простые и 6 - нормальные.

Начнем с двух простых способов

Аналогично определителю «два на два», определитель «три на три» можно раскрыть с помощью формулы:

Пример:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок».

Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:

Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс». Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Как решить систему линейных уравнений?

Что значит решить систему линейных уравнений? Решить систему уравнений – это значит найти такие значения переменных, которые обращают КАЖДОЕ уравнение системы в верное равенство.

После того, как решена ЛЮБАЯ система уравнений ЛЮБЫМ способом, настоятельно рекомендую выполнить проверку на черновике или калькуляторе.

Правило Крамера.

А сейчас мы разберём правило Крамера, а также решение системы линейных уравнений с помощью обратной матрицы (матричный метод). Для того чтобы освоить данный параграф Вы должны уметь раскрывать определители «два на два» и «три на три».

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:

Находим главный определитель системы:

Если D=0, то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет/

Если D≠0, то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:

И, наконец, ответ рассчитывается по формулам:

Пример

Решить систему по формулам Крамера.

Решение:

Решим систему по формулам Крамера.

значит, система имеет единственное решение.

Ответ: ..

Собственно, здесь опять комментировать особо нечего. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: .

Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие. Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения.

Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:

Здесь в первом уравнении отсутствует переменная , во втором – переменная . В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:

– на месте отсутствующих переменных ставятся нули.

Решение системы с помощью обратной матрицы

Пример



Страницы: 1 | 2 | Одной страницей


See also:
Новое
Похожие записи
  • Титльник и содержание
    Министерство образования Омской области БОУ ОО СПО «Омский колледж транспортного строительства» Специальность...
  • Теоретическое содержание
    Основные этапы развития литературно-критической мысли Девятнадцатый век В девятнадцатом веке литературоведение оформилось...
  • Теоретическое содержание (2)
    Тема 7. ПРОБЛЕМА РОДА И ЖАНРА В НАУКЕ О ЛИТЕРАТУРЕ* Большинство исследователей...

Комментарии закрыты.