Инструменты нанотехнологий

20 Февраль 2014 →

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Национальный исследовательский ядерный университет «МИФИ»

Институт международных отношений

Факультет:

«УПРАВЛЕНИЯ И ЭКОНОМИКИ ВЫСОКИХ ТЕХНОЛОГИЙ»

Кафедра:

№ 23

Специальность:

030701

«Международные отношения»

реферат НА ТЕМУ:

Инструменты нанотехнологий

Студент

Любавин Н.А.

Подпись

Фамилия И.О.

Руководитель работы

Самедов В.В.

Подпись

Фамилия И.О.

Оглавление

Оглавление2

Введение3

Глава 1.Понятие о сканирующей зондовой микроскопии4

1.1Определение сканирующей зондовой микроскопии4

1.2Основные принципы работы СЗМ. Система обратной связи4

Глава 2.Сканирующая туннельная микроскопия7

2.1Принцип работы СТМ7

2.2Измерение вольт-амперных характеристик туннельного контакта10

2.3Система управления СТМ10

2.4Конструкции сканирующих туннельных микроскопов13

2.5Применение СТМ в нанотехнологиях15

Глава 3.Атомно-силовая микроскопия16

3.1Принцип работы АСМ16

3.1.1Контактная атомно-силовая микроскопия19

3.1.2Бесконтактный режим работы АСМ21

3.1.3«Полуконтактный» режим колебаний кантилевера АСМ22

3.2Применение АСМ23

Глава 4.Ближнепольная оптическая микроскопия24

4.1Принцип работы БОМ24

4.2«Share-force» метод контроля расстояния зонд-поверхность в БОМ26

4.3Приминение БОМ26

Заключение28

Список литературы29

Введение

Мы все чаще слышим слова нанонаука, нанотехнология, наноструктурированные материалы и объекты. Отчасти они уже вошли в повседневную жизнь, ими обозначают приоритетные направления научно-технической политики в развитых странах. Так, в США действует программа “Национальная нанотехнологическая инициатива” (в 2001 г. ее бюджет был 485 млн долл., что сопоставимо с годовым бюджетом всей Российской академии наук). Евросоюз недавно принял шестую рамочную программу развития науки, в которой нанотехнологии занимают главенствующие позиции. Минпромнауки РФ и РАН также имеют перечни приоритетных, прорывных технологий с приставкой “нано-”. По оценкам специалистов в области стратегического планирования, сложившаяся сейчас ситуация во многом аналогична той, что предшествовала тотальной компьютерной революции, однако последствия нанотехнологической революции будут еще обширнее и глубже. Да, собственно, она уже началась и взрывообразно захватывает все новые и новые области.

Однако уместно говорить не о нанотехнологиях вообще, а о технологиях и производствах с атомарной точностью. Разработка современного оборудования, используемого при анализе наноматериалов, явилась своеобразным ускорителем (катализатором) в создании наноматериалов. Можно даже сказать, что создание новых приборов и визуализация наномира дала толчок развитию нанотехнологий вообще. В любом случае, следует знать и понимать основные методы исследований, которые существуют в области нанотехнологий.

Понятие о сканирующей зондовой микроскопии

Определение сканирующей зондовой микроскопии

Сканирующая зондовая микроскопия (СЗМ) - один из мощных современных методов исследования морфологии и локальных свойств поверхности твердого тела с высоким пространственным разрешением. За последние 10 лет сканирующая зондовая микроскопия превратилась из экзотической методики, доступной лишь ограниченному числу исследовательских групп, в широко распространенный и успешно применяемый инструмент для исследования свойств поверхности. В настоящее время практически ни одно исследование в области физики поверхности и тонкопленочных технологий не обходится без применения методов СЗМ. Развитие сканирующей зондовой микроскопии послужило также основой для развития новых методов в нанотехнологии – технологии создания структур с нанометровыми масштабами.

В сканирующих зондовых микроскопах исследование микрорельефа поверхности и ее локальных свойств проводится с помощью специальным образом приготовленных зондов в виде игл. Рабочая часть таких зондов (острие) имеет размеры порядка десяти нанометров. Характерное расстояние между зондом и поверхностью образцов в зондовых микроскопах по порядку величин составляет 0,1 – 10 нм. В основе работы зондовых микроскопов лежат различные типы взаимодействия зонда с поверхностью. Так, работа туннельного микроскопа основана на явлении протекания туннельного тока между металлической иглой и проводящим образцом; различные типы силового взаимодействия лежат в основе работы атомно-силового, магнитно- силового и электросилового микроскопов.

Основные принципы работы СЗМ. Система обратной связи

Рассмотрим общие черты, присущие различным зондовым микроскопам. Пусть взаимодействие зонда с поверхностью характеризуется некоторым параметром Р. Если существует достаточно резкая и взаимно однозначная зависимость параметра Р от расстояния зонд – образец Р = Р(z), то данный параметр может быть использован для организации системы обратной связи (ОС), контролирующей расстояние между зондом и образцом.

Система обратной связи поддерживает значение параметра Р постоянным, равным величине Р0, задаваемой оператором. Если расстояние зонд – поверхность изменяется (например, увеличивается), то происходит изменение (увеличение) параметра Р. В системе ОС формируется разностный сигнал, пропорциональный величине ΔP = P – P0 , который усиливается до нужной величины и подается на исполнительный элемент. Исполнительный элемент отрабатывает данный разностный сигнал, приближая зонд к поверхности или отодвигая его до тех пор, пока разностный сигнал не станет равным нулю. Таким образом, можно поддерживать расстояние зонд-образец с высокой точностью. В существующих зондовых микроскопах точность удержания расстояния зонд-поверхность достигает величины ~ 0.01 Å. При перемещении зонда вдоль поверхности образца происходит изменение параметра взаимодействия Р, обусловленное рельефом поверхности. Система ОС отрабатывает эти изменения, так что при перемещении зонда в плоскости X,Y сигнал на исполнительном элементе оказывается пропорциональным рельефу поверхности. Для получения СЗМ изображения осуществляют специальным образом организованный процесс сканирования образца. При сканировании зонд вначале движется над образцом вдоль определенной линии (строчная развертка), при этом величина сигнала на исполнительном элементе, пропорциональная рельефу поверхности, записывается в память компьютера. Затем зонд возвращается в исходную точку и переходит на следующую строку сканирования (кадровая развертка), и процесс повторяется вновь. Записанный таким образом при сканировании сигнал обратной связи обрабатывается компьютером, и затем СЗМ изображение рельефа поверхности Z = f(x,y) строится с помощью средств компьютерной графики. Наряду с исследованием рельефа поверхности, зондовые микроскопы позволяют изучать различные свойства поверхности: механические, электрические, магнитные, оптические и многие другие.

Сканирующая туннельная микроскопия

Сканирующий туннельный микроскоп (СТМ) – первый из семейства зондовых микроскопов – был изобретен в 1981 году швейцарскими учеными Гердом Биннигом и Генрихом Рорером. В своих работах они показали, что это достаточно простой и весьма эффективный способ исследования поверхности с пространственным разрешением вплоть до атомарного. Настоящее признание данная методика получила после визуализации атомарной структуры поверхности ряда материалов и, в частности, реконструированной поверхности кремния. В 1986 году за создание туннельного микроскопа Г. Биннигу и Г. Рореру была присуждена Нобелевская премия по физике.

Принцип работы СТМ

Принцип работы СТМ основан на явлении туннелирования электронов через узкий потенциальный барьер между металлическим зондом и проводящим образцом во внешнем электрическом поле.

В СТМ зонд подводится к поверхности образца на расстояния в несколько ангстрем. При этом образуется туннельно-прозрачный потенциальный барьер, величина которого определяется, в основном, значениями работы выхода электронов из материала зонда ϕp и образца ϕs. При качественном рассмотрении барьер можно считать прямоугольным с эффективной высотой, равной средней работе выхода материалов:

При приложении к туннельному контакту разности потенциалов V между зондом и образцом появляется туннельный ток. Для оценок и качественных рассуждений часто пользуются упрощенной формулой:

в которой величина j0(V) считается не зависящей от изменения расстояния зонд-образец. Для типичных значений работы выхода (ϕ ~ 4 эВ) значение константы затухания k = 2Å-1, так что при изменении ΔZ на ~ 1Å величина тока меняется на порядок. Реальный туннельный контакт в СТМ не является одномерным и имеет более сложную геометрию, однако основные черты туннелирования, а именно экспоненциальная зависимость тока от расстояния зонд-образец, сохраняются также и в более сложных моделях, что подтверждается экспериментально.

Экспоненциальная зависимость туннельного тока от расстояния позволяет осуществлять регулирование расстояния между зондом и образцом в туннельном микроскопе с высокой точностью. СТМ представляет собой электромеханическую систему с отрицательной обратной связью. Система обратной связи поддерживает величину туннельного тока между зондом и образцом на заданном уровне (I0), выбираемом оператором. Контроль величины туннельного тока, а следовательно, и расстояния зонд-поверхность осуществляется посредством перемещения зонда вдоль оси Z с помощью пьезоэлектрического элемента.

Изображение рельефа поверхности в СТМ формируется двумя методами. По методу постоянного туннельного тока (рис. 1 (а)) зонд перемещается вдоль поверхности, осуществляя растровое сканирование; при этом изменение напряжения на Z - электроде пьезоэлемента в цепи обратной связи (с большой точностью повторяющее рельеф поверхности образца) записывается в память компьютера в виде функции Z = f (x,y), а затем воспроизводится средствами компьютерной графики.

Рисунок 1. Формирование СТМ изображений поверхности по методу постоянного туннельного тока (а) и постоянного среднего расстояния (б)

При исследовании атомарно гладких поверхностей часто более эффективным оказывается получение СТМ изображения поверхности по методу постоянной высоты Z = const. В этом случае зонд перемещается над поверхностью на расстоянии нескольких ангстрем, при этом изменения туннельного тока регистрируются в качестве СТМ изображения поверхности (рис. 1 (б)). Сканирование производится либо при отключенной ОС, либо со скоростями, превышающими скорость реакции ОС, так что ОС отрабатывает только плавные изменения рельефа поверхности. В данном способе реализуются очень высокие скорости сканирования и высокая частота получения СТМ изображений, что позволяет вести наблюдение за изменениями, происходящими на поверхности, практически в реальном времени.

Измерение вольт-амперных характеристик туннельного контакта

С помощью СТМ можно снимать вольт-амперные характеристики (ВАХ) туннельного контакта в различных точках поверхности, что позволяет судить о локальной проводимости образца и изучать особенности локальной плотности состояний в энергетическом спектре электронов. Для регистрации вольт-амперных характеристик туннельного контакта в СТМ применяется следующая процедура. На СТМ изображении поверхности выбирается область образца, в которой предполагается произвести измерения. Зонд СТМ выводится сканером в соответствующую точку поверхности. Для получения ВАХ контакта обратная связь на короткое время разрывается, и к туннельному промежутку прикладывается линейно нарастающее напряжение. При этом синхронно с изменением напряжения регистрируется ток, протекающий через туннельный контакт. Во время снятия ВАХ на время разрыва обратной связи на электрод сканера подается потенциал, равный потенциалу непосредственно перед разрывом.

В каждой точке производится снятие нескольких ВАХ. Итоговая вольт-амперная характеристика получается путем усреднения набора ВАХ, снятых в одной точке. Усреднение позволяет существенно минимизировать влияние шумов туннельного промежутка.

Система управления СТМ

Упрощенная схема системы управления СТМ представлена на рис. 2. Система управления СТМ состоит из цифровой части, реализованной на базе персонального компьютера, и аналоговой части, выполняемой обычно в виде отдельного блока. Цифровая часть состоит из набора ЦАП и АЦП и выделена на схеме красной пунктирной границей. Аналоговая часть показана на схеме синей пунктирной линией. Напряжение на туннельном промежутке задается оператором с помощью ЦАП-U, а поддерживаемый системой обратной связи ток - с помощью ЦАП-I . Двухканальные цифро-аналоговые преобразователи ЦАП-X и ЦАП-У служат для формирования строчных и кадровых разверток. Петля обратной связи состоит из предварительного усилителя ПУ, конструктивно расположенного в измерительной головке СТМ, разностного усилителя РУ, фильтра низких частот ФНЧ, усилителей У4 и У5, пьезопреобразователя, регулирующего величину туннельного промежутка.

Рисунок 2. Схема системы управления сканирующего туннельного микроскопа

Перед началом работы оператор устанавливает рабочие параметры туннельного тока и напряжения и включает систему сближения зонда и образца. При этом управляющее напряжение подается на двигатель с ЦАП–Д. В начальном состоянии ток в петле обратной связи отсутствует, и сканер максимально вытянут в направлении к образцу. При появлении туннельного тока обратная связь отодвигает сканер, и система переходит в режим точной установки образца. В этом режиме происходит совместное движение образца и отодвигание (системой ОС) зонда до тех пор, пока сканер не встанет в середину своего динамического диапазона. При этом в петле обратной связи поддерживается постоянным выбранное оператором значение туннельного тока.

Сканирование образца осуществляется при подаче напряжений пилообразной формы на внешние электроды трубчатого сканера с помощью двухканальных ЦАП–Х и ЦАП–У и двухканальных высоковольтных усилителей У1 и У2. При сканировании система обратной связи поддерживает постоянным туннельный ток. Это происходит следующим образом. Реальное мгновенное значение туннельного тока It сравнивается на разностном усилителе со значением I0, заданным оператором. Разностный сигнал (It – I0) усиливается (усилителями У4 и У5) и подается на внутренний Z-электрод сканера. Таким образом, при сканировании напряжение на Z-электроде сканера оказывается пропорциональным рельефу поверхности. Сигнал с выхода усилителя У4 записывается с помощью АЦП как информация о рельефе поверхности.

Для получения информации о распределении локальной работы выхода сигнал с генератора Г подмешивается на усилителе У5 к напряжению на Z-электроде. Соответствующая компонента туннельного тока на частоте ω выделяется полосовым фильтром ПФ и детектируется с помощью синхронного детектора СД, на который также подается опорное напряжение с задающего генератора. Фаза сигналов синхронизируется с помощью фазовращателя ФВ. Амплитуда тока на частоте ω записывается в память компьютера с помощью АЦП как сигнал, пропорциональный локальной работе выхода.

Регистрация ВАХ туннельного контакта в заданной точке образца осуществляется следующим образом. Обратная связь разрывается на короткое время электронным ключом К. Напряжение на внутреннем электроде пьезотрубки поддерживается постоянным с помощью конденсатора С, так что зонд на короткое время зависает над поверхностью. После этого с ЦАП-U на туннельный промежуток подается напряжение U(t) пилообразной формы, и синхронно с ним в АЦП записывается информация о туннельном токе с выхода предварительного усилителя ПУ. После этого ключ К замыкается, и система обратной связи восстанавливает состояние туннельного контакта, соответствующее условию It = const. При необходимости процедура снятия ВАХ повторяется N раз для формирования усредненных зависимостей туннельного тока от напряжения.

Конструкции сканирующих туннельных микроскопов

В настоящее время в литературе описаны сотни различных конструкций сканирующих зондовых микроскопов. С одной стороны, такое количество разработанных СЗМ обусловлено практической необходимостью, поскольку для решения конкретных задач часто требуется определенная конфигурация СЗМ. С другой стороны, относительная простота механической части СЗМ стимулирует изготовление измерительных головок, максимально адаптированных к условиям конкретного эксперимента непосредственно в научных лабораториях.

Для эффективной работы конструкция измерительной головки СТМ должна удовлетворять целому ряду требований. Наиболее важными из них является требование высокой помехозащищенности. Это обусловлено большой чувствительностью туннельного промежутка к внешним вибрациям, перепадам температуры, электрическим и акустическим помехам. В настоящее время в этом направлении накоплен большой опыт, разработаны достаточно эффективные способы защиты СТМ от воздействия различных внешних факторов. В конечном итоге, выбор той или иной системы виброизоляции и термокомпенсации диктуется, в основном, целесообразностью и удобством использования. Другая, не менее важная группа требований к дизайну СТМ, связана с условиями применения разрабатываемого микроскопа и определяется задачами конкретного эксперимента.

В качестве примера, на рис. 3 схематически показана конструкция измерительной головки СТМ с компенсацией термодрейфа положения зонда.

Рисунок 3. Конструкция измерительной головки СТМ. 1- основание; 2 - трубчатый трехкоординатный пьезосканер; 3 - термокомпенсирующая пьезотрубка, служащая рабочим элементом шагового пьезодвигателя; 4 - металлический зонд; 5 - образец; 6 - цилиндрический держатель образца

Основу конструкции составляют две коаксиальные пьезокерамические трубки различного диаметра, закрепленные на общем основании (1). Внутренняя трубка (2) выполняет роль трехкоординатного пьезосканера. Внешняя трубка (3) является многофункциональной частью конструкции. Во-первых, внешняя трубка выполняет роль компенсатора термодеформаций внутренней трубки, стабилизируя положение зонда в направлении нормали к исследуемой поверхности. Во-вторых, она является рабочим элементом шагового пьезодвигателя, служащего для подвода образца к зонду. Вся конструкция СТМ обладает аксиальной симметрией, что уменьшает термодрейф положения зонда в плоскости поверхности исследуемого образца.

Применение СТМ в нанотехнологиях

Сканирующий туннельный микроскоп можно использовать и для перемещения атома в точку, выбранную оператором. Если напряжение между иглой микроскопа и поверхностью образца сделать в несколько больше, чем надо для изучения этой поверхности, то ближайший к ней атом образца превращается в ион и "перескакивает" на иглу. После этого слегка переместив иглу и изменив напряжение, можно заставить сбежавший атом "спрыгнуть" обратно на поверхность образца. Таким образом, можно манипулировать атомами и создавать наноструктуры, т.е. структуры на поверхности, имеющие размеры порядка нанометра. Ещё в 1990 году сотрудники IBM показали, что это возможно, сложив из 35 атомов ксенона название своей компании на пластинке из никеля.

С помощью зондового микроскопа можно не только двигать атомы, но и создавать предпосылки для их самоорганизации. Например, если на металлической пластине находится капля воды, содержащая ионы тиолов, то зонд микроскопа будет способствовать такой ориентации этих молекул, при которой их два углеводородных хвоста будут обращены от пластины. В результате, можно выстроить монослой тиольных молекул, прилипших к металлической пластине.

Сегодня метод СТМ широко используется для изучения тонких пленок, квантовых точек, квантовых нитей и углеродных нанотрубок.

Атомно-силовая микроскопия

Одной из наиболее распространенных разновидностей сканирующей зондовой микроскопии является атомно-силовая микроскопия. Первый микроскоп такого типа был сконструирован Г. Биннигом, Х. Гербером и С. Квайтом в 1986 году, после того как годом ранее Г. Бинниг показал принципиальную возможность неразрушающего контакта зонда (атомно-острой иглы) с поверхностью образца.

Принцип работы АСМ

В основе работы АСМ лежит силовое взаимодействие между зондом и поверхностью, для регистрации которого используются специальные зондовые датчики, представляющие собой упругую консоль с острым зондом на конце. Сила, действующая на зонд со стороны поверхности, приводит к изгибу консоли. Регистрируя величину изгиба, можно контролировать силу взаимодействия зонда с поверхностью.

Действительно, если подвести зонд к образцу на расстояние в несколько ангстрем, то между атомами, образующими острие, и атомами, расположенными на поверхности образца, начнет действовать Ван-дер-Ваальсова сила притяжения. Под действием этой силы зонд будет приближаться к образцу до тех пор, пока не начнется электростатическое отталкивание одноименно (отрицательно) заряженных электронных оболочек атомов зонда и поверхности.

Наиболее часто энергию ван-дер-ваальсова взаимодействия двух атомов, находящихся на расстоянии r друг от друга, аппроксимируют степенной функцией – потенциалом Леннарда-Джонса:

Первое слагаемое в данном выражении описывает дальнодействующее притяжение, обусловленное, в основном, диполь - дипольным взаимодействием атомов. Второе слагаемое учитывает отталкивание атомов на малых расстояниях. Параметр r0 – равновесное расстояние между атомами, U0 - значение энергии в минимуме.

Потенциал Леннарда-Джонса позволяет оценить силу взаимодействия зонда с образцом. Общую энергию системы можно получить, суммируя элементарные взаимодействия для каждого из атомов зонда и образца.

В общем случае данная сила имеет как нормальную к поверхности, так и латеральную (лежащую в плоскости поверхности образца) составляющие. Реальное взаимодействие зонда с образцом имеет более сложный характер, однако основные черты данного взаимодействия сохраняются - зонд АСМ испытывает притяжение со стороны образца на больших расстояниях и отталкивание на малых.

Получение АСМ изображений рельефа поверхности связано с регистрацией малых изгибов упругой консоли зондового датчика. В атомно-силовой микроскопии для этой цели широко используются оптические методы (рис. 4).

Рисунок 4. Схема оптической регистрации изгиба консоли зондового датчика АСМ

Оптическая система АСМ юстируется таким образом, чтобы излучение полупроводникового лазера фокусировалось на консоли зондового датчика, а отраженный пучок попадал в центр фоточувствительной области фотоприемника. В качестве позиционно - чувствительных фотоприемников применяются четырехсекционные полупроводниковые фотодиоды.

Основные регистрируемые оптической системой параметры - это деформации изгиба консоли под действием Z-компонент сил притяжения или отталкивания (FZ) и деформации кручения консоли под действием латеральных компонент сил (FL) взаимодействия зонда с поверхностью. Если обозначить исходные значения фототока в секциях фотодиода через I01, I02, I03, I04, а через I1, I2, I3, I4 - значения токов после изменения положения консоли, то разностные токи с различных секций фотодиода ΔIi = Ii - I0i будут однозначно характеризовать величину и направление изгиба консоли зондового датчика АСМ. Разность токов вида

пропорциональна изгибу консоли под действием силы, действующей по нормали к поверхности образца.

А комбинация разностных токов вида

характеризует изгиб консоли под действием латеральных сил.

Величина ΔIz используется в качестве входного параметра в петле обратной связи атомно-силового микроскопа (рис. 5). Система обратной связи (ОС) обеспечивает ΔIz=const с помощью пьезоэлектрического исполнительног элемента, который поддерживает изгиб консоли ΔZ равным величине ΔZ0, задаваемой оператором.

Рисунок 5. Упрощенная схема организации обратной связи в атомно-силовом микроскопе

При сканировании образца в режиме ΔZ = const зонд перемещается вдоль поверхности, при этом напряжение на Z-электроде сканера записывается в память компьютера в качестве рельефа поверхности Z = f (x,y). Пространственное разрешение АСМ определяется радиусом закругления зонда и чувствительностью системы, регистрирующей отклонения консоли. В настоящее время реализованы конструкции АСМ, позволяющие получать атомарное разрешение при исследовании поверхности образцов.

Контактная атомно-силовая микроскопия

Условно методы получения информации о рельефе и свойствах поверхности с помощью АСМ можно разбить на две большие группы – контактные квазистатические и бесконтактные колебательные. В контактных квазистатических методиках остриё зонда находится в непосредственном соприкосновении с поверхностью, при этом силы притяжения и отталкивания, действующие со стороны образца, уравновешиваются силой упругости консоли. При работе АСМ в таких режимах используются кантилеверы с относительно малыми коэффициентами жесткости, что позволяет обеспечить высокую чувствительность и избежать нежелательного чрезмерного воздействия зонда на образец.

В квазистатическом режиме АСМ изображение рельефа исследуемой поверхности формируется либо при постоянной силе взаимодействия зонда с поверхностью (сила притяжения или отталкивания), либо при постоянном среднем расстоянии между основанием зондового датчика и поверхностью образца. При сканировании образца в режиме Fz = const система обратной связи поддерживает постоянной величину изгиба кантилевера, а следовательно, и силу взаимодействия зонда с образцом. При этом управляющее напряжение в петле обратной связи, подающееся на Z-электрод сканера, будет пропорционально рельефу поверхности образца.

При исследовании образцов с малыми (порядка единиц ангстрем) перепадами высот рельефа часто применяется режим сканирования при постоянном среднем расстоянии между основанием зондового датчика и поверхностью (Z = const). В этом случае зондовый датчик движется на некоторой средней высоте Zср над образцом, при этом в каждой точке регистрируется изгиб консоли ΔZ, пропорциональный силе, действующей на зонд со стороны поверхности. АСМ изображение в этом случае характеризует пространственное распределение силы взаимодействия зонда с поверхностью.

Недостаток контактных АСМ методик - непосредственное механическое взаимодействие зонда с поверхностью. Это часто приводит к поломке зондов и разрушению поверхности образцов в процессе сканирования. Кроме того, контактные методики практически не пригодны для исследования образцов, обладающих малой механической жесткостью, таких как структуры на основе органических материалов и биологические объекты.

Бесконтактный режим работы АСМ

В процессе сканирования используются колебательные методики, которые позволяют уменьшить последствия механического взаимодействия зонда с исследуемой поверхностью. В бесконтактном режиме кантилевер возбуждают так, чтобы он совершал вынужденные колебания с амплитудой приблизительно 1нм. При приближении кантилевера к поверхности на него действуют вандерваальсовы силы. Градиент сил приводит к сдвигу амплитудно-частотной и фазо-частотной характеристик системы. Это обстоятельство используется для получения фазового контраста в исследованиях поверхности методом атомно-силовой микроскопии.

Система обратной связи, как правило, поддерживает постоянной амплитуду колебаний зонда, а изменение частоты и фазы в каждой точке записывается. Однако возможно установление обратной связи путём поддержания постоянной величины частоты или фазы колебаний.

Достоинства метода:

Отсутствует воздействие зонда на исследуемую поверхность

Недостатки метода:

Крайне чувствителен ко всем внешним шумам

Наименьшее латеральное разрешение

Наименьшая скорость сканирования

Функционирует лишь в условиях вакуума, когда отсутствует адсорбированный на поверхности слой воды

Попадание на кантилевер во время сканирования частички с поверхности образца меняет его частотные свойства и настройки сканирования "уходят"

В связи с множеством сложностей и недостатков метода, его приложения в АСМ крайне ограничены.

«Полуконтактный» режим колебаний кантилевера АСМ

Регистрация изменения амплитуды и фазы колебаний кантилевера в бесконтактном режиме требует высокой чувствительности и устойчивости работы обратной связи. На практике чаще используется так называемый "полуконтактный" режим колебаний кантилевера (иногда его называют прерывисто-контактный, а в иностранной литературе - "intermittent contact" или "tapping mode" режимы). При работе в этом режиме возбуждаются вынужденные колебания кантилевера вблизи резонанса с амплитудой порядка 10 – 100 нм. Кантилевер подводится к поверхности так, чтобы в нижнем полупериоде колебаний происходило касание поверхности образца.

При сканировании образца регистрируется изменение амплитуды и фазы колебаний кантилевера. Амплитуда и фаза колебаний кантилевера зависят от степени взаимодействия поверхности и зонда в нижней точке колебаний кантилевера. Поскольку в нижней точке колебаний зонд механически взаимодействует с поверхностью, то на изменение амплитуды и фазы колебаний кантилевера в этом режиме существенное влияние оказывает локальная жесткость поверхности образцов.

Формирование АСМ изображения поверхности в режиме колебаний кантилевера происходит следующим образом. С помощью пьезовибратора возбуждаются колебания кантилевера на частоте ω (близкой к резонансной частоте кантилевера) с амплитудой Аω. При сканировании система обратной связи АСМ поддерживает постоянной амплитуду колебаний кантилевера на уровне A0 , задаваемом оператором (A0 < Аω). Напряжение в петле обратной связи (на z-электроде сканера) записывается в память компьютера в качестве АСМ изображения рельефа поверхности. Одновременно при сканировании образца в каждой точке регистрируется изменение фазы колебаний кантилевера, которое записывается в виде распределения фазового контраста.

Достоинства метода:

Наиболее универсальный из методов АСМ, позволяющий на большинстве исследуемых образцов получать разрешение 1-5 нм

Латеральные силы, действующие на зонд со стороны поверхности, устранены - упрощает интерпретацию получаемых изображений

Недостатки метода:

Максимальная скорость сканирования меньше, чем в контактном режиме.

Применение АСМ

Современная атомно-силовая микроскопия активно используется во всем мире для исследования как полупроводников, так и любых других материалов. Очень широкое развитие она получила по исследованию вирусов, клеток, генов в биологии, - там с ней связывают большие надежды. Интересным является возможность использовать АСМ для литографии, - как механического царапания поверхности шипом, так и окисления поверхности под шипом при подаче на иглу потенциала. Это открывает большие возможности по использованию самого метода СЗМ для нужд нанолитогафии.

АСМ также применяются для модификации поверхности. Используя жесткие зонды, можно делать гравировку и проводить наночеканку ‒ выдавливать на поверхности крошечные рисунки. Применение жидкостной атомно-силовой микроскопии позволяет локально проводить электрохимические реакции, прикладывая разность потенциалов между зондом и проводящей поверхностью, а также открывает возможность применения АСМ для исследования биологических объектов.

Ближнепольная оптическая микроскопия

Традиционные методы получения оптических изображений объектов имеют существенные ограничения, связанные с дифракцией света. Одним из основополагающих законов оптики является существование так называемого дифракционного предела, который устанавливает минимальный размер (R) объекта, изображение которого может быть построено оптической системой при использовании света с длиной волны λ:

,

где n - показатель преломления среды. Для оптического диапазона длин волн предельный размер составляет величину порядка 200÷300нм. В ближнепольной оптической микроскопии используются другие принципы построения изображения объекта, которые позволяют преодолеть трудности, связанные с дифракцией света, и реализовать пространственное разрешение на уровне 10нм и лучше.

Принцип работы БОМ

Ближнепольный оптический микроскоп (БОМ) был изобретен Дитером Полем (лаборатория фирмы IBM, г. Цюрих, Швейцария) в 1982 году сразу вслед за изобретением туннельного микроскопа. В основе работы данного прибора используется явление прохождения света через субволновые диафрагмы (отверстия с диаметром много меньше длины волны падающего излучения).

При прохождении света через субволновое отверстие наблюдается ряд особенностей. Электромагнитное поле в области диафрагмы имеет сложную структуру. Непосредственно за отверстием на расстояниях Z < 100а располагается так называемая ближняя зона, в которой электромагнитное поле существует, в основном, ввиде эванесцентных (не распространяющихся) мод, локализованных вблизи поверхности диафрагмы. В области расстояний Z > 100a располагается дальняя зона, в которой наблюдаются лишь излучательные моды. Мощность излучения за субволновой диафрагмой в дальней зоне может быть оценена по следующей формуле:

,

где k – волновой вектор, W0 – плотность мощности падающего излучения.

Оценки показывают, что для излучения с длиной волны порядка λ = 500нм и диафрагмы с отверстием ~ 5нм мощность излучения в дальней зоне составляет по порядку величин 10-10 от мощности падающего излучения. Поэтому, на первый взгляд, кажется, что использование малых отверстий для построения растровых оптических изображений исследуемых образцов практически невозможно. Однако если поместить исследуемый объект непосредственно за отверстием в ближней зоне, то вследствие взаимодействия эванесцентных мод с образцом часть энергии электромагнитного поля переходит в излучательные моды, интенсивность которых может быть зарегистрирована оптическим фотоприемником. Таким образом, ближнепольное изображение формируется при сканировании исследуемого образца диафрагмой с субволновым отверстием и регистрируется в виде распределения интенсивности оптического излучения в зависимости от положения диафрагмы I( x, y ) . Контраст на БОМ изображениях определяется процессами отражения, преломления, поглощения и рассеяния света, которые, в свою очередь, зависят от локальных оптических свойств образца.

Отличительной особенностью СБОМ по сравнению с СТМ и АСМ является необходимость независимой системы подвода и удержания зонда вблизи поверхности, поэтому, как правило, СБОМ комбинируется совместно с АСМ, который обеспечивает удержание зонда вблизи поверхности так называемым “shear-force” методом. Это усложняет и удорожает СБОМ, но, с другой стороны, позволяет одновременно получить СБОМ- и АСМ-изображения, что дает более полную информацию о поверхности образца.

«Share-force» метод контроля расстояния зонд-поверхность в БОМ

Для работы БОМ необходимо удерживать зонд над поверхностью на расстояниях порядка 10нм и менее. Существуют различные решения данной проблемы, однако наиболее широкое распространение получили БОМ с так называемым "shear-force" методом контроля расстояния между зондом и образцом.

Чаще всего применяются схемы "shear-force" контроля с использованием пьезодатчика на основе кварцевого резонатора камертонного типа. Зонд БОМ крепится к кварцевому резонатору с помощью клея. Вынужденные колебания камертона на частоте, близкой к резонансной частоте системы зонд – кварцевый резонатор, возбуждаются с помощью дополнительного пьезовибратора. При этом зонд совершает колебательное движение параллельно поверхности образца. Измерение силы взаимодействия зонда с поверхностью производится посредством регистрации изменения амплитуды и фазы изгибных колебаний кварцевого резонатора на частоте возбуждения.

Изменения амплитуды и фазы изгибных колебаний в системе зонд-резонатор используются в качестве сигналов обратной связи для контроля расстояния зонд-поверхность в ближнепольных оптических микроскопах.

Приминение БОМ

Уступая СТМ и АСМ в разрешении, СБОМ имеет свою область применения в научных исследованиях. Кроме получения оптического изображения с высоким разрешением, это прежде всего локальная оптическая спектроскопия микроэлектронных, микробиологических и полупроводниковых объектов и модификация поверхности для сверхплотной записи информации и нанолитографии.

Заключение

Таким образом, в данном реферате были рассмотрены принципы работы основных типов зондовых микроскопов (сканирующего туннельного микроскопа, атомно-силового микроскопа), наиболее широко используемых в научных исследованиях. К сожалению, за рамками данного реферата остались другие приборы, работающие на принципах СЗМ, и большое количество исследовательских методик с применением зондовых микроскопов.

В настоящее время сканирующая зондовая микроскопия – это бурно развивающийся метод исследования поверхности с высоким пространственным разрешением и мощный инструмент для решения задач нанотехнологии – технологии создания приборных структур с субмикронными размерами.

Список литературы

Миронов В.Л. Основы сканирующей зондовой микроскопии. М.: Мир, 2004.

Кобаяси Н. Введение в нанотехнологию. М.: Бином, 2005.

http://www.nanometer.ru/2011/11/13/nanoazbuka_264154.html (Нанотехнологическое сообщество «Нанометр». «Инструменты нанотехнологий»; последнее обновление: 10 апреля 2013г.)

http://www.nanonewsnet.ru/blog/nikst/viktor-bykov-instrumenty-nanotekhnologii-segodnya-zavtra (Сайт о нанотехнологиях «Nanonewsnet». «Инструменты нанотехнологий сегодня и завтра»; последнее обновление: 10 апреля 2013г.)

http://www.rusnanonet.ru/equipment/ (Российская национальная нанотехнологическая сеть «Rusnanonet». «Инструменты нанотехнологий»; последнее обновление: 10 апреля 2013г.)

Суслов А. А., Чижик С. А. Сканирующие зондовые микроскопы Т.2 (1997).

http://ru.wikipedia.org/wiki/Сканирующий_зондовый_микроскоп («Сканирующие зондовые микроскопы»; последнее обновление: 18 января 2013г.)




See also:
Для студента
Похожие записи

Комментарии закрыты.