22,23,24

20 Февраль 2014 →

22-23 вопрос

НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ РЯДА АЦЕТИЛЕНА (АЛКИНЫ)

Алкины — алифатические непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна тройная связь.

Углеводороды ряда ацетилена являются еще более непредельными соединениями, чем соответствующие им алкены (с тем же числом углеродных атомов). Это видно из сравнения числа атомов водорода в ряду:  Алкины образуют свой гомологический ряд с общей формулой, как и у диеновых углеводородов СnH2n-2

1. СТРОЕНИЕ АЛКИНОВ

Первым и основным представителем гомологического ряда алкинов является ацетилен (этин) С2Н2. Строение его молекулы выражается формулами:  По названию первого представителя этого ряда — ацетилена — эти непредельные углеводороды называют ацетиленовыми.

В алкинах атомы углерода находятся в третьем валентном состоянии (sp-гибридизация). В этом случае между углеродными атомами возникает тройная связь, состоящая из одной s- и двух p-связей. Длина тройной связи равна 0,12 нм, а энергия ее образования составляет 830 кДж/моль. Модели пространственного строения ацетилена представлены на рисунке:  2. НОМЕНКЛАТУРА И ИЗОМЕРИЯ

Номенклатура. По систематической номенклатуре ацетиленовые углеводороды называют, заменяя в алканах суффикс н на суффикс -ин. В состав главной цепи обязательно включают тройную связь, которая определяет начало нумерации. Если молекула содержит одновременно и двойную, и тройную связи, то предпочтение в нумерации отдают двойной связи: 

По рациональной номенклатуре алкиновые соединения называют, как производные ацетилена.

Непредельные (алкиновые) радикалы имеют тривиальные или систематические названия:

Н—СєС— - этинил;

НСєС—СН2— -пропаргил

Изомерия. Изомерия алкиновых углеводородов (как и алкеновых) определяется строением цепи и положением в ней кратной (тройной) связи: 

3. ПОЛУЧЕНИЕ АЛКИНОВ

Ацетилен в промышленности и в лаборатории можно получать следующими способами:

1. Высокотемпературным разложением (крекинг) природного газа — метана:

2СН4 1500°C-> НСєСН + 3Н2

или этана:

С2Н6 1200°C-> НСєСН + 2Н2

2. Разложением водой карбида кальция СаС2, который получают спеканием негашеной извести СаО с коксом:

СаО + 3C 2500°C-> CaC2 + CO

СаС2 + 2Н2O -> НСєСН + Са(ОН)2

3. В лаборатории производные ацитилена можно синтезировать из дигалогенопроизводных, содержащих два атома галогена при одном или соседних углеродных атомах, действием спиртового раствора щелочи:

4. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА

физические свойства. Ацетиленовые углеводороды, содержащие в молекуле от двух до четырех углеродных атомов (при обычных условиях), — газы, начиная с C5H8 — жидкости, а высшие алкины (с С16Н30 и выше)— твердые вещества. Физические свойства некоторых алкинов показаны в табл. 1.  *При температуре -32 °С,

**При температуре- 50 °С.

Химические свойства. Химические свойства алкинов определяются тройной связью, особенностями ее строения. Алкины способны вступать в реакции присоединения, замещения, полимеризации и окисления.

Реакции присоединения. Будучи непредельными соединениями, алкины вступают в первую очередь в реакции присоединения. Эти реакции протекают ступенчато: с присоединением одной молекулы реагента тройная связь вначале переходит в двойную, а затем, по мере дальнейшего присоединения, — в одинарную. Казалось бы, алкины, обладая двумя p-связями, гораздо активнее должны вступать в реакции электрофильного присоединения. Но это не совсем так. Углеродные атомы в молекулах алкинов расположены ближе друг к другу, чем в алкенах, и обладают большей электроотрицательностью. Это связано с тем, что электроотрицательность атома углерода зависит от его валентного состояния. Поэтому p-электроны, находясь ближе к ядрам углерода, проявляют несколько меньшую активность в реакциях электрофильного присоединения. Кроме того, сказывается, близость положительно заряженных ядер атомов, способных отталкивать приближающиеся электрофильные реагенты (катионы). В то же время алкины могут вступать в реакции нуклеофильиого присоединения (со спиртами, аммиаком и др.).

1. Гидрирование. Реакция протекает в тех же условиях, что и в случае алкенов (катализаторы Pt, Pd, Ni). При восстановлении алкинов вначале образуются алкены, а затем — алканы: CHєCH + H2 -> CH2=CH2 + H2 -> CH3-CH3

2. Галогенирование. Эта реакция протекает с меньшей скоростью, чем в ряду этиленовых углеводородов. Реакция также проходит сту пенчато:

CHєCH + Br2 -> CHBr = CHBr + Br2 -> CHBr2-CHBr2

3. Гидрогалогенирование. Реакции присоединения галогеноводородов, как и галогенов, идут в основном по механизму электрофильного присоединения:

CHєCH + HBr -> CH2=CHBr + HBr -> CH3-CHBr2

Вторая молекула галогеноводорода присоединяется в соответствии с правилом Марковникова.

4. Присоединение воды (реакция М.Г.Кучерова,. 1881). Катализатор — соль ртути:

HCєCH + HOH ——> {CH2=CH—OH}(промежуточный неустойчивый продукт)(виниловый спирт)

{CH2=CH—OH} -> CH3—C=O-H (уксусный альдегид)

Неустойчивое промежуточное соединение — виниловый спирт — перегруппировывается в уксусный альдегид.

5.Присоединение синильной кислоты:

НСєСН + HCN кат.-> H2C=CH—CN (акрилонитрил)

Акрилонитрил — ценный продукт. Он используется в качестве мономера для получения синтетического волокна — нитрон.

6. Присоединение спирта. В результате этой реакции образуются простые виниловые эфиры (реакция А. Е.Фаворского):

НСєСН + HO—C2H5 KOH-> H2C=CH—O—C2H5 (этилвиниловый эфир)

Присоединение спиртов в присутствии алкоголятов — типичная реакция нуклеофильного присоединения.

Реакция изомеризации. Ацетиленовые углеводороды, как алканы и алкены, способны к изомеризации с перемещением тройной связи:

Н3С—СН2—СєСН Na(спирт р-р)-> Н3С—СєС—СН3

Реакции полимеризации. Ацетилен в зависимости от условий реакции способен образовывать различные продукты полимеризации — линейные или циклические:

НСєСН + НСєСН —> НСєСН—CН=CH2 [sup] (при 80г.ц. и Cu2Cl2,образуется винилацетилен)

Эти вещества представляют большой интерес. Например, при присоединении к винилацетилену хлороводорода образуется хлоропрен, который в качестве мономера используется в производстве хлоропренового каучука: 

Реакция окисления. Ацетилены легко кисляются. При этом происходит разрыв молекулы по месту тройной связи. Если ацетилен пропускать через окислитель (водный раствор перманганата калия), то раствор быстро обесцвечивается. Эта реакция является качественной на кратные (двойные и тройные) связи:

3НСєСН + 10KMnO+ 2H2O -> 6CO2 + 10КОН + 10MnO2

При полном сгорании ацетилена на воздухе образуются два продукта оксид углерода (IV) и вода:

2НСєСН + 5O2 -> 4СO2 + 2Н2O

При неполном сгорании образуется углерод (сажа):

НСєСН + O2 -> С + СО + Н2О

5. ОТДЕЛЬНЫЕ ПРЕДСТАВИТЕЛИ

Ацетилен (этин) НСєСН — бесцветный газ, без запаха (технический ацетилен имеет неприятный запах, что объясняется присутствием различных примесей). Ацетилен мало растворим в воде, хорошо — в ацетоне. На воздухе горит сильно коптящим пламенем [ высокое (в процентах) содержание углерода в молекуле]. При горении в кислороде ацетилен создает высокотемпературное пламя (до 3000 °С). Это используется для сварки и резки металлов. Смеси ацетилена с кислородом или воздухом взрывоопасны, поэтому ацетилен хранят и транспортируют в специальных баллонах (маркировка: белый баллон с красной надписью "Ацетилен"). Этот баллон заполняют пористым материалом, который пропитывают ацетоном.

Ацетилен — ценный продукт для химической промышленности. Из него получают синтетический каучук, уксусный альдегид и уксусную кислоту, этиловый спирт и многие другие вещества.

Винилацетилен (бутен-1-ин-3)НСєC—СН=CН2 — газ с неприятным запахом. При восстановлении образует бутадиен-1,3, а при присоединении хлороводорода — 2-хлорбутадиен-1,3 (хлоропрен).

Применение ацетилена:

1) может применяться в качестве горючего при газовой сварке и резке металлов;

2) используется также для синтеза различных органических соединений;

3) в результате присоединения хлора к ацетилену получают растворитель – 1,1,2,2-тетрахлорэтан. Путем дальнейшей переработки тетрахлорэтана получаются другие хлорпроизводные;

4) при отщеплении хлороводорода от 1,1,2,2-тетрахлорэтана образуется трихлорэтен – растворитель высокого качества, который широко применяется при чистке одежды: СНСI = ССI2;

5) в больших количествах ацетилен идет на производство хлорэтена, или винилхлорида, с помощью полимеризации которого получается поливинилхлорид (используется для изоляции проводов, изготовления плащей, искусственной кожи, труб и других продуктов);

6) из ацетилена получаются и другие полимеры, которые необходимы в производстве пластмасс, каучуков и синтетических волокон.

24 вопросСпособы получения галогенопроизводных предельных углеводородов

 

 

                  Замещение водорода в предельных углеводородах на галоген. При действии галогенов на предельные углеводороды под влиянием света в результате замещения атомов водорода образуется галогеналкины.

Например:

 

CH4 + Cl2          CH3Cl + HCl

Метан                        Хлористый метил

 

Однако при этом образуются и значительные количества полигалогенпроизводных.

При прямом галогенировании более сложных углеводородов замещение водорода может происходить у различных углеродных атомов. Так, например, уже при хлорировании пропана реакция протекает по двум направлениям – образуется смесь двух галогеналкилов

 

 

 

 

                    Получение из непредельных углеводородов. Галогеналкины образуются при присоединении галогеноводородов к этиленовым углеводородам

 

 

При присоединении к этиленовым углеводородам галогенов или к ацетиленовым – галогеноводородов образуются дигалогенопроизводные. Из ацетиленовых и диеновых углеводородов в результате присоединения галогенов могут буть получены разнообразные тетрагалогенпроизводные.

 

                    Получение из спиртов. Наиболее удобным способом получения галогеноалкилов является замещение гидроксильной группы спиртов R– OH на галоген.

Если действовать на спирт галогенводородом, то образуется галогеналкил

 

Однако по мере образования галогеналкила и воды последняя будет гидролизовать галогеналкил, и поэтому такая реакция обратима. Чтобы получить хорший выход галогеналкила, в реакцию вводят избыток галогенводорода либо ведут ее в присутствии водооотнимающих средств (концентрированной серной кислоты). Например:

 

 

 

 

Для получения галогеналкилов удобно действие на спирты галогенных соединений фосфора. Например:

 

 

 

 

 

         Или

 

        


See also:
Для студента
Похожие записи

Комментарии закрыты.